Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 3199-3212, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38407436

RESUMEN

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.


Asunto(s)
Genoma Viral , Virus de la Influenza A , Proteoma , Proteínas Virales , Humanos , Genoma Viral/genética , Virus de la Influenza A/genética , Proteoma/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética , Eliminación de Secuencia/genética , Animales , Perros , Línea Celular
2.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38168266

RESUMEN

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.

3.
PLoS Biol ; 20(12): e3001934, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542656

RESUMEN

Viruses must balance their reliance on host cell machinery for replication while avoiding host defense. Influenza A viruses are zoonotic agents that frequently switch hosts, causing localized outbreaks with the potential for larger pandemics. The host range of influenza virus is limited by the need for successful interactions between the virus and cellular partners. Here we used immunocompetitive capture-mass spectrometry to identify cellular proteins that interact with human- and avian-style viral polymerases. We focused on the proviral activity of heterogenous nuclear ribonuclear protein U-like 1 (hnRNP UL1) and the antiviral activity of mitochondrial enoyl CoA-reductase (MECR). MECR is localized to mitochondria where it functions in mitochondrial fatty acid synthesis (mtFAS). While a small fraction of the polymerase subunit PB2 localizes to the mitochondria, PB2 did not interact with full-length MECR. By contrast, a minor splice variant produces cytoplasmic MECR (cMECR). Ectopic expression of cMECR shows that it binds the viral polymerase and suppresses viral replication by blocking assembly of viral ribonucleoprotein complexes (RNPs). MECR ablation through genome editing or drug treatment is detrimental for cell health, creating a generic block to virus replication. Using the yeast homolog Etr1 to supply the metabolic functions of MECR in MECR-null cells, we showed that specific antiviral activity is independent of mtFAS and is reconstituted by expressing cMECR. Thus, we propose a strategy where alternative splicing produces a cryptic antiviral protein that is embedded within a key metabolic enzyme.


Asunto(s)
Ácido Graso Desaturasas , Virus de la Influenza A , Humanos , Ácido Graso Desaturasas/metabolismo , Empalme Alternativo/genética , Mitocondrias/metabolismo , Virus de la Influenza A/genética , Isoformas de Proteínas/metabolismo , Replicación Viral
4.
Nat Microbiol ; 5(12): 1490-1503, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839537

RESUMEN

Cells infected by influenza virus mount a large-scale antiviral response and most cells ultimately initiate cell-death pathways in an attempt to suppress viral replication. We performed a CRISPR-Cas9-knockout selection designed to identify host factors required for replication after viral entry. We identified a large class of presumptive antiviral factors that unexpectedly act as important proviral enhancers during influenza virus infection. One of these, IFIT2, is an interferon-stimulated gene with well-established antiviral activity but limited mechanistic understanding. As opposed to suppressing infection, we show in the present study that IFIT2 is instead repurposed by influenza virus to promote viral gene expression. CLIP-seq demonstrated that IFIT2 binds directly to viral and cellular messenger RNAs in AU-rich regions, with bound cellular transcripts enriched in interferon-stimulated mRNAs. Polysome and ribosome profiling revealed that IFIT2 prevents ribosome pausing on bound mRNAs. Together, the data link IFIT2 binding to enhanced translational efficiency for viral and cellular mRNAs and ultimately viral replication. Our findings establish a model for the normal function of IFIT2 as a protein that increases translation of cellular mRNAs to support antiviral responses and explain how influenza virus uses this same activity to redirect a classically antiviral protein into a proviral effector.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Biosíntesis de Proteínas , ARN Viral/genética , Proteínas de Unión al ARN/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral
5.
Cell Rep ; 24(10): 2581-2588.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184493

RESUMEN

Adaptation of viruses to their hosts can result in specialization and a restricted host range. Species-specific polymorphisms in the influenza virus polymerase restrict its host range during transmission from birds to mammals. ANP32A was recently identified as a cellular co-factor affecting polymerase adaption and activity. Avian influenza polymerases require ANP32A containing an insertion resulting from an exon duplication uniquely encoded in birds. Here we find that natural splice variants surrounding this exon create avian ANP32A proteins with distinct effects on polymerase activity. We demonstrate species-independent direct interactions between all ANP32A variants and the PB2 polymerase subunit. This interaction is enhanced in the presence of viral genomic RNA. In contrast, only avian ANP32A restored ribonucleoprotein complex assembly for a restricted polymerase by enhancing RNA synthesis. Our data suggest that ANP32A splicing variation among birds differentially affects viral replication, polymerase adaption, and the potential of avian hosts to be reservoirs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad , Empalme del ARN/genética , Proteínas Virales/metabolismo , Animales , Aves , Línea Celular , Exones/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Unión Proteica/genética , Unión Proteica/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética
6.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795415

RESUMEN

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infection in >95% of adults worldwide and are associated with a variety of malignancies. Coevolution of gammaherpesviruses with their hosts has resulted in an intricate relationship between the virus and the host immune system, and perturbation of the virus-host balance results in pathology. Interferon regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. Here, we show that type I interferon (IFN) and IRF-1 cooperate to control acute gammaherpesvirus infection. Specifically, we demonstrate that a combination of IRF-1 and type I IFN signaling ensures host survival during acute gammaherpesvirus infection and supports IFN gamma-mediated suppression of viral replication. Thus, our studies reveal an intriguing cross talk between IRF-1 and type I and II IFNs in the induction of the antiviral state during acute gammaherpesvirus infection. IMPORTANCE: Gammaherpesviruses establish chronic infection in a majority of adults, and this long-term infection is associated with virus-driven development of a range of malignancies. In contrast, a brief period of active gammaherpesvirus replication during acute infection of a naive host is subclinical in most individuals. Here, we discovered that a combination of type I interferon (IFN) signaling and interferon regulatory factor 1 (IRF-1) expression is required to ensure survival of a gammaherpesvirus-infected host past the first 8 days of infection. Specifically, both type I IFN receptor and IRF-1 expression potentiated antiviral effects of type II IFN to restrict gammaherpesvirus replication in vivo, in the lungs, and in vitro, in primary macrophage cultures.


Asunto(s)
Gammaherpesvirinae/patogenicidad , Infecciones por Herpesviridae/inmunología , Interacciones Huésped-Patógeno , Factor 1 Regulador del Interferón/genética , Interferón-alfa/genética , Interferón beta/genética , Animales , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Antígenos Nucleares/genética , Antígenos Nucleares/inmunología , Gammaherpesvirinae/crecimiento & desarrollo , Regulación de la Expresión Génica , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/mortalidad , Infecciones por Herpesviridae/virología , Humanos , Factor 1 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Interferón-alfa/inmunología , Interferón beta/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Pulmón/inmunología , Pulmón/virología , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Proteínas/genética , Proteínas/inmunología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal , Bazo/inmunología , Bazo/virología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...